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Abstract 

Eringen  and  Suhubi [l] , [ 2 ]  introduced  the  general  theory  of 
micro-elasticity  whereby  the  local  deformations  of  material  points 

are  taken  into  account,  the  necessity  for  this  consideration  being 

the  nonhomogeneity  of  the  material  at  the  local  level. 

One of the  problem  areas of micro-elasticity  remaining  is  the 

determination  of  the  material  constants  (either  analytically  or 

experimentally)  which  even  for  the  linear  isotropic  theory  number 

eighteen. In addition,  an  inertia  constant  must  be  determined. 
This  report  is  a  study of the  relationship of a  linear  micro- 

morphic  material  to  linear  classically  elastic  constituents  and 
investigates  the  possibility of obtaining  the  material  constants 

from  the  properties of the  constituents. 
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1. Introduction 

Using  relationships  given  by  Eringen  and  Suhubi [l],  [2],  it  is 

shown  that  the  strain  energy  of  a  linear  micromorphic  body  is  equal 
to  the  sum  of  the  energies  of  the  constituents  when  the  constituents 

are  assumed  to  be  linear  classically  elastic.  That  is, 

Wdv = W'dv' 
dv 

where  W  is  the  macro-strain  energy  density,  dv  the  macro-differential 

element, W'  the  micro-strain  energy  density,  and  dv'  the  micro- 

differential  element.  Assuming  the  constituents  to  be  also  isotropic, 

W'  is  given  by  the  relation 

X' and p' are  the  Lam;  constants  for  the  constituent  (the  value  of  each 
depends  on  which  constituent is present).  Here  u' = au'i/ax'  the 
x' are  rectangular  coordinates  of  a  point  in  the  body,  and u'  is  the 

i,j j' 

j i 
displacement  vector  at  a  point  in  the  micro-volume. 

By  substituting (1.2) into (1.1) and  using  an  expression  for  u' 
i,j 

in  terms  of  kinematical  macro-quantities,  the  right-hand  side  of (1.1) 
can  be  expressed  in  terms  of  these  macro-quantities  and  properties  of 

the  constituents.  The  left-hand  side  is  given  by  Eringen  and  Suhubi  in 

terms of the  macro-quantities  and  micromorphic  material  moduli.  Equating 
like  terms,  relationships  for  the  micromorphic  material  moduli  in  terms 

of  constituent  properties  are  obtained. 
The  special  case  of  a  two  constituent  isotropic  micromorphic 

material  is  considered  in  detail.  For  this  case,  all  constituent  properties 
except  three  are  easily  evaluated.  Determination  of  the  eighteen 

micromorphic  material  moduli  and  the  micromorphic  inertia  constant, p10, 

is therefore  reduced  to  the  experimental  determination  of  these  three 
unknowns. 



2. Strain  Energy  Densities 

A differential  element,  dv,  of  the  micromorphic  material  consists 
of  many  micro-differential  elements,  dv',  as  shown  in  figure 1 (where 

different  shaded  areas  represent  different  constituents). It is 
assumed  that  each  constituent  is  an  elastic  solid. 

Upon  deformation,  the  center  of  mass  of  dv  moves  from  position X - 
to x, and  that  of  dv'  goes  from  position X' to x'. - - - 

According  to  a  first  order  approximation,  the  displacement 

 vector,^', of X' can  be  represented  in  terms  of  the  displacement of 

the  mass  center, u, as  follows. 
- - 

- 
u' = Uk + u k krel 

E = f j W'dv' = 1 2 t'ije'ijdv' 1 
V dv V dv 

Here I$ is  a  function  of x and  time,  and < is  the  relative  position 

vector  of x' with  respect  to x as  shown  in  figure 1. 
kR - R 

- - 
This  motion  is  identical  to  that  described  in  [l]  after 

linearization. 

Consider  the  total  strain  energy  of  an  arbitrary  volume, V, with 
surface S of  the  micromorphic  material  obtained  by  summing  the  strain 

energies  of  the  constituents. 

w', tfij, and  e'  are  the  constituent  strain  energy  density, ij 
stress  tensor,  and  strain  tensor  respectively  at  any  point x ' .  Upon 

carrying  the  linear  strain  measure 
- 
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Figure 1. Dif feren t ia l   E lements   for  a Micromorphic Material. 



into  expression (2.2) we obtain 

E = f I 2 ttijul .dv' = J 2 [(t'iju'i)yj - t' u'  ldv' . 1 1 
V dv i, J V dv ij,j i 

Since  the  surface  tractions  and  u'  are  continuous  across  the i 
surface  of  each  dv'  the  first  volume  integral  can  be  changed  to  a 

surface  integral. 

E = - 1 f 1 tlijulida' - $ J t' .ufidv' . 
S ds j V dv ij Y J  

ds  is  a  differential  surface  area  of S and  da' = n'  da'  where  n'  is 

the  outer  normal  of  a  micro-differential  area  da'  (also on S). 
j j j 

Upon  substituting (2.1) into (2.5)  and  remembering  that  u  and i 

'ik are  independent  of  integration  over  ds  or  dv, we obtain 

2E = f [Ui J t' dalj + $ik tVji k ji S ds  ds 
5. da'.l 

- J [Ui J t' .dv' + (p V dv  ji,J  ik dv J t'jiyJ .Skdv' 1 . 

The  following  terms  (averaged  quantities)  defined  by  Eringen  and 

Suhubi [l] are  now  employed. 

1 tvjida' E t. .da , 
ds j J =  j 

- f trjiSkdarj - - hjikdaj Y 

ds 

f ttijdv' E s dv 
dv ij 
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da = n  ds  where  n i s  the  outer  normal  of  ds.  t and hjik 
j j  j i j  'ij' 

are r e f e r r e d   t o  as stress q u a n t i t i e s .  

It can   a l so   be  shown (see  appendix A) t h a t  

f t ' j i , j  5 k  dv' = (tki k i   j i k , j l d V  - s  + x  
dv 

For  an  unprimed  quantity,  an  index  following a comma rep resen t s  

p a r t i a l   d i f f e r e n t i a t i o n   w i t h   r e s p e c t   t o   x  a t  
ax.  

j ,  e * g *  t j i , j  ji 

j 
Using  (2.7)  and  (2.8),  expression  (2.6) becomes 

Changing t h e   s u r f a c e   i n t e g r a l   t o  a volume in t eg ra l ,   ( 2 .9 )  

becomes 

- - 
yij k 'ij , k  

- -  

5 
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int roduced i n  [l]. With these ,  (2.10) now becomes 

There fo re ,   t he   s t r a in   ene rgy   dens i ty ,  W ,  fo r   the   micromorphic  

material obtained  by summing t h e   s t r a i n   e n e r g i e s   o f   t h e   c o n s t i t u e n t s  

i s  

1 1 1 
2 j i  i j  i j  

w = - t (2eij - E - 2 xjikyikj + T ~ ~ ~ ( E ~ ~  - e 1 
(2.13) 

= ( t j i  - 1 S i j k i j  + (- 1 s - - 1 t , . ) E i j  - - 2 i j  2 ~1 l x  2 j i k Y i k j  

This   expression  can  be shown t o   b e   e q u i v a l e n t   t o   t h a t   g i v e n   f o r  

t h e   s t r a i n   e n e r g y   d e n s i t y ,  1, i n   [ 2 ]  (see appendix B ) .  

T h e r e f o r e ,   t h e   t o t a l   s t r a i n   e n e r g y  of the  micromorphic body  can 

be  obtained by summing t h e   s t r a i n   e n e r g i e s   o f   t h e   c o n s t i t u e n t s .  

6 



3. Extension  of  Clapeyron's  Theorem  to  Micromorphic  Theorv 

Proceeding in a  manner  similar  to  section 2, Clapeyron's  Theorem 

can  be  extended to micromorphic  theory. 

According  to  Sokolnikoff [3]  we have:  Clapeyron's  Theorem - If 
a  body  is in equilibrium  under  a  given  system of body  forces F and 
surface  forces Tiv E t n then  the  strain  energy  of  deformation  is 

equal  to  one-half  the  work  that  would  be  done  by  the  external  forces 

(of the  equilibrium  state)  acting  through  the  displacements  u  from 

the  unstressed  to  the  stressed  state,  i.e., 

i 

vi v'  

i 

2 f Wdv = J Fiuidv + tj iuidaj . 
V v S 

(3 .1)  

Applying  the  theorem  to  dv  of  the  micromorphic  body,  and  then 

summing  over  the  complete  body,  we  have ( p '  and f t i  are  the  constituent 

mass  density  and  body  force  per  mass  density  respectively). 

2 f Wdv = J / p'f'iu'idv' + f t'jiu'ida' . 
V V dv S ds j 

Note  again  that  the  tractions  and u' are  continuous  across i 
the surface of  each  dv'.  Using  equation  (2.1) we obtain 

2 J Wdv = I [ui f p'ftidv' + $ik J p'f'i6kdv'1 
V V dV  dv 

The  definitions (2.7) and  the  following  (also  given  in [l]) 
are  applied. 

p'f'idv'  pfidv, 
dv 

,f p'f'iSkdv' E pRikdv . 
dv 

7 



p, fi, and gik are the mass density, body force per mass density, and 

first body moment per mass density respectively of  the micromorphic 

material. 

We have, therefore, the result 

2 1 Wdv = I v v 

+ /  
S 
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4. Micromorphic  Strain  Energy  Density  in  Terms  of  Constituent  Properties 

It has  been  shown  in  section 2 that  the  strain  energy of a 

micromorphic  body  is  equal  to  the  sum  of  the  energies  of  the  constituents. 
That  is,  for  the  differential  element,  dv,  shown  in  Figure 1, 

Wdv = f W'dv' 
dv 

W' is  obtained  from  the  classical  relation 

X' and p' are  the  Lami  constants for the  constituent  (the  value  of  each 
depends  on  which  constituent  is  present). 

Carrying ( 2 . 3 )  into ( 4 . 2 )  we  have 

w' = - X'u' u' 1 1 
2 i,i  j,j + - 2 u '  (u'i,ju'  i,j + u' u' ) . i,j  j,i 

It is  necessary to find  an  expression  for u' in  terms  of 
i,j 

macro-quantities  as  is  the  case  for u' introduced  in  [l],  i.e. i 

If we  consider u' expressible  as  a  function of (x' t) then  clearly i jy 
for ( 4 . 4 )  to  be  valid,  we  must  have 

Differentiating u' i 

au' 
U' 
i,j 

= -  

axk 

aui 
= (-+ 

a Xk 

by  the  chain  rule  gives 

axk au; a t k  

ax' ag, ax' 
- + -  - 

j 

( 4 . 3 )  

9 



where 

The  following  relationship  between xti, xi,  and €, is  now  used, [l]. i 

x' = x  + S i  . i  i (4.8) 

Differentiating  with  respect  to x' we  have 
j 

&ij ij  ij = A  + H  (4.9) 

or 

Expression (4.6) for u' now  becomes 
i,j 

In general,  is  a  function  of  x' However,  an  examination % j' 
of  the  analysis  which  follows  shows  use of a  non-constant  value  would 

give  material  moduli  for  the  micromorphic  material  which  are  functions 

of  position.  That  is,  the  material  would  not  be  homogeneous. We 

exclude  this  case  and  consider % cnnstant 

(4.10) 

(4.11) 

10 



(4.12) 
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We note  that u (Pij , and  their  derivatives  and qCj are i' 
independent  of  the  integration  variables.  The  following  integrals 

are  introduced  for  convenience.  Some  of  these  will  be  evaluated 

explicitly  later. 

X'dv' E 2Bdv Y I p'dv' E 2Cdv , 
dv  dv 

J X'S 5 dv' E 2Dmkdv , m k  p' 5 5 dv'  2Emkdv , (4.13) m k  dv  dv 

X ' Smdv' E 2Fmdv 
dv 

Y 1-1 ' Smdv'  2Gmdv . 
dv 

The  micromorphic  strain  energy  density  now  takes  the  following  form. 

W = B{AkiAmj  [ui,  kuj  ,m - 2~ i,k $ jm + $ .  lk $. Jm I + 2Aki[ui,k$jj - 0. .$. I + $.  .$. . I  
JJ Ik 11 JJ 

12 



Expression  (4.14)  must now be compared wi th   t he   l i nea r i zed   fo rm of 

the  theory  developed  by  Eringen  and  Suhubi [l], [ 2 ] .   I n   t h a t  development, 

t h e   s t r a i n   m e a s u r e s  

e x p r e s s i o n   f o r  W i n  

must  be a quadra t i c  

W E -  1 
2 ‘ijkkeijekR + 

defined  by (2.11) are u t i l i z e d .  The  most genera l  

the   l inear   theory   o f   micromorphic  elastic s o l i d s  

e x p r e s s i o n   i n   t h e s e  strain measures.   Therefore,  

1 1 
2 bijkREijEkk + - a  2 ijkRmnYijkykmn 

(4.15) 

where  the  following symmetries must  hold. 

C = c  = c  i jkR  kk i j   j ikR’  

a ijkkmn  Rmnijk ’ = a  

g i jkk  = gijRk 

Subs t i tu t ing   (2 .11)   in to   (4 .15)  and  comparing  with  (4.141, i t  is 

found t h a t   t h e  symmetry condi t ions,   (4 .16) ,  are s a t i s f i e d   i f  A is of 

a special  form,  namely 
i j  

Aij = 

This  i s  a s u f f i c i e n t   c o n d i t i o n  and has   not   been shown t o   b e  a 

necessa ry   cond i t ion .   Fu r the r   i nves t iga t ion   i n to   t he   gene ra l i t y  

of A is needed. 
ij 
With  (4.17)  imposed,  the  following  expressions are found f o r  

t h e   c o n s t a n t s   i n   ( 4 . 1 5 ) .  

(4.16) 

(4.17) 

13 



(4.18) 

For   the  case where  the  micromorphic material i s  i s o t r o p i c ,   t h e  

following  conditions  must  be  imposed. 

F = G i l = O  , 

Dij 

E i j  

R 

- - D 6ij , (4.19) 

= E &  . 
Ij 

Using  (4.17)  and  (4.19),  expression  (4.14)  can  be  compared  with 

the   express ion   of   energy   for  a l i nea r   i so t rop ic   mic romorph ic  material 

[2,  pp.  396,  3971.  The material moduli  of  Eringen  and  Suhubi, A , u  , T-I , 
T, 0, V, K ,  T 1, T 2 ,  .........., T11 i n  terms of t h e   c o n s t i t u e n t  

p r o p e r t i e s  are found t o   b e  

A = 2(2A-1) 2B Y v = 2  (2A-a2C , 
T = 2(2A-l)(l-A)B , (5 = 2(2A-l)(l-A)C , 
T-I = 2A(l-A)B Y V = 2A(l-A)C , 
K = 2A(l-A)C 9 T = 2A2D , 

7 

i ( i  = 1, 2 ,  3, 4, 5, 8, 9 ,   10)  . 

6 
T = 2A2E 

T = o  
1 T 11 = 2A2E , 

(4.20) 

14 



Expressions  for By  Cy  D, E and  the  inertia  term,  pIo,  which  appears 
in  [l]  and  [2]  are  now  considered  for  a  material  made  of  two  constituents. 

The  following  operations  may  be  performed  on  (4.13) 1' 

J A'dv' = C J Apdv' = A' J dv' + A 2  1 dv' 
2 

dv  p=l  dv 
P  dvl  dv2 

(4.21) 

= A 1 dvl + A2dv2 

where A' and X 2  are  the  first  Lam;  constant  of  materials 1 and  2 

respectively. 
Let 5 be  the  volume  density  of  material 1. Then 

Volume 1 - - dv 1 Volume  2 dv2 
= Total  Volume 

- dv Y l - 5  = Total  Volume  dv ' 
- 

Therefore, 

or 

2B = A 5 + X 2 ( 1 - < )  . 1 

(4.22) 

(4.23) 

(4.24) 

In a  similar  manner,  one  obtains (pl and p 2  are  the  second 

Lam;  constant  for  materials 1 and  2  respectively) 

2c = p 5 + p 2 ( 1 - < >  . 1 (4.25) 

It is  thus  seen  that  2B  and  2C  are  determined  by  the  "Rule  of  Mixtures". 

Consider  now  the  following  operations  on  (4.13)  for  the  isotropic 3 
microelastic  material. 

2D6mkdv = A'EmSkdv' 
dv 

L 

= C APgmSkdv' 

P 
p=l  dv 

15 



. . ... . . . . "_ .. "_ . _" __  . - 

= 2[X 1 Q + A2R16mkd~ 

where 

246  dv E S,Skdvl , 2R6 dv : S,Skdvl . mk  mk 
dvl  dv2 

Therefore, 

D = A Q + X 2 R .  1 

In  a  similar  manner  one  can  obtain 

E = p Q + p 2 R  . 1 

Noting  that  the  inertia  term, p I o ,  is  given by [l] 

PI 6 dv E f p'SmSkdv' , 
dv o mk 

( 4 . 2 6 )  

(4.27) 

(4.28) 

(4.29) 

(4.30) 

one  obtains ( p l  and p2 are  the  mass  densities f o r  materials 1 and  2 

respectively) 

This  completes  the  determination of the  micromorphic  material 

constants  and PI- for  a  two  constituent  material.  All  quantities  except 
U 1 2 1 2 1  2 A,  Q, and R can  be  found  once 5, p , p , X , A , p , and p are  given. 

A ,  Q, and  R  are  left f o r  experimental  investigation. 

A physical  interpretation  of A can  be  made.  Conditions  (4.17)  and 
(4.10) used  in  (4.7)  give 

( 4 . 3 2 )  

16 



I n t e g r a t i o n ,   s e t t i n g   t h e   a r b i t r a r y   i n t e g r a t i o n   c o n s t a n t s   e q u a l   t o  

zero   g ives  

"k = Y 5, = (1-A)x' k '  (4.33) 
r 

When A goes   t o   un i ty ,  5 goes   t o   ze ro  and % becomes x'  Then, k k' 
from  (4.27), Q and R become zero,  and  therefore,  from  (4.28)  and  (4.29), 

D and E become zero.  Looking a t  (4.20),  i t  is s e e n   t h a t  a l l  cons t an t s  

except  A and p go t o   z e r o .  A and p, however, are ca l cu la t ed  by t h e  "Rule 

of Mixtures"  and are a c t u a l l y   j u s t   t h e  Lame c o n s t a n t s   f o r   t h e  material 

which now behaves as a c l a s s i c a l l y  elastic material. 

. 

It appears   then   tha t  A is a measure  of  whether a material behaves 

as c l a s s i c a l l y  elastic o r   e x h i b i t s   o t h e r  phenomena. Also, s i n c e  A relates 

x t o  x' it a p p e a r s   t o   b e  a measure  of how l a r g e  dv  (which i s  a c t u a l l y  

c o n s i d e r e d   f i n i t e )  must be   t aken   such   tha t   averaging  i s  possible--however, 

t h e r e  must be  a l i m i t  t o  how l a r g e  dv  can  be  taken.  With  the  above 

c o n s i d e r a t i o n s   i n  mind, i t  is  conjec tured   tha t  

k k' 

l i A L M  , 

where M is some f i n i t e   v a l u e .  

A is probably  very  c lose  to   uni ty   s ince  most  t e n  s i l e  t 

(4.34) 

ests on 

composite materials give  close  agreement  with  the  "Rule  of  Mixtures"  values.  

A s  a f ina l   s tep ,   us ing   (4 .201 ,   the   l inear   i so t ropic   micromorphic  

displacement  equations  of  motion  [2] may b e   w r i t t e n  as 

(4.35) 
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Appendix A 

31 j 
t . .  da = ,f tjiYj dv . 

Therefore, 

J t f j i , j  dv' = tjiYj dv . 
dv 

dv' + f I t '  x'  dv' 
V dv j i , j  k 

= - J Xk tjiYj dv + f [ ( t t j i   x ' k >  ~j - t ' k i ldv '  
V V dv 

= - %tjiyjdv + I f t '  xlkda '  - J skidv 
V s a s  j i  j v  

= - J XktjiY dv + J 5 ,f t f j i  da' + ,f t f j i C k d a t j  
v S ds  j S ds  

- J skidv 
V 

= - J X k t j i Y j  dv + 1 xktjidaj + 1 hjikdaj - f sijdv 

= - f X k t j i , j  dv + 

v S S V 

\tj  
.dv + f tkidV 

V V Y J  V 

+ 6 ' j ik , j   dv  - 1 skidv v 

= 1 ( t k i  + ' j i k , j  - s k i  )dv . v 
20 
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Appendix B 

A  comparison  of  expressions  can  be  made  in  the  following  way. 

In the  linear  theory  of [l] and [2] ,  the  stress  components  are 

given  in  terms  of  the  derivatives  of  the  strain  energy  density. 

- ac 
kRm 

-" 
a 'Rmk 

Therefore,  we  obtain 

1 1 ac 1 ac t - -  " - - + - ( - - -  ac 
kR 2 'kR 2 aekR aEkR Rk aE ) 

Then, 

1  1 
(tji - - 2 Sij) eij + - 2 (Sij - t..) Eij - - J 1  

The  last  equality  is  obtained  from  Euler's  relation  for  homogeneous 

functions [ 4 ]  since  is  homogeneous  quadratic in its  arguments. 
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